Exploring the Antioxidant and Anti-proliferative Effects of Murraya koenigii (L.) Leaves Methanol Extract on T47D Breast Cancer Cell Lines

Authors

DOI:

https://doi.org/10.35898/ghmj-811204

Keywords:

Antioxidant, Anti-proliferative, Cytotoxicity, Murraya koenigii, T47D Breast Cancer

Abstract

Background: Murraya koenigii (Curry) leaves are herbal plants that have bioactive compounds such as phenolics, flavonoids, and alkaloids that function as antioxidants and anti-cancers.

Aims: This study aimed to quantitatively determine the bioactive compounds in curry leaves by calculating phenolic, flavonoid, and alkaloid content. Its potential as an antioxidant and anti-proliferative compound in T47D breast cancer cell lines was also analyzed.

Methods: Murraya koenigii leaves extract was obtained by maceration using 80% methanol (1:5 w/v), then the antioxidant and anti-proliferative test was carried out using the 1,1-Diphenyl-2-Pycrylhidracyl (DPPH) and MTT (-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, respectively, followed by flow cytometry to determine the apoptotic activity of the extract on T47D breast cancer cell lines.

Results: The results for the bioactive compounds in the methanol extract of Murraya koenigii leaves were 156.62±1.49 mg/g phenolics, 99.19±0.25 mg/g flavonoids, and 2.90±0.01 mg/g alkaloids. The IC50 value for antioxidant activity was 25.058±2.2 μg/ml and showed an anti-proliferative effect on T47D cells in a dose-dependent manner with IC50 74.71±5.45 μg/ml for cytotoxicity. Furthermore, flow cytometry showed that a concentration of 1/16 IC50 has the best results for apoptosis.

Conclusion: The methanol extract of Murraya koenigii leaves has the potential as an antioxidant and anti-proliferative agent and can induce apoptosis of T47D cells.

Downloads

Download data is not yet available.

Author Biographies

  • Mutia Khoirun Nisa, M.Sc., Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia

    Post gradute student in Biology Study Program. Research interest: Plant extraction, antioxidant assay, and cell culture experiment.

  • Rohmi Salamah, M.Sc., Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia

    Post Graduate student in Biology Study Program. Research Interest in Flow-cytometer technique.

  • Dr.biol.hom. Nastiti Wijayanti, M.Si., Faculty of Biology, Universitas Gadjah Mada

    Lecture/Researcher at Laboratory of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia. Research Interest: Immunobiology, Animal Physiology, Virology, Molecular Biology.

References

Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G., & Alwis, D. D. D. H. (2021). Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 7(7). https://doi.org/10.1016/J.HELIYON.2021.E07449

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 11, 12–17. https://doi.org/10.1016/J.JARMAP.2018.07.003

Alshehade, S. A., Almoustafa, H. A., Alshawsh, M. A., & Chik, Z. (2024). Flow cytometry-based quantitative analysis of cellular protein expression in apoptosis subpopulations: A protocol. Heliyon, 10(13), e33665. https://doi.org/10.1016/J.HELIYON.2024.E33665

Arjun, P., Semwal, D., Semwal, R., Malaisamy, M., Sivaraj, C., & Vijayakumar, S. (2017). Total Phenolic Content, Volatile Constituents and Antioxidative Effect of Coriandrum sativum, Murraya koenigii and Mentha arvensis. The Natural Products Journal, 7(1), 65–74. https://doi.org/10.2174/2210315506666161121104251

Arun, A., Patel, O. P. S., Saini, D., Yadav, P. P., & Konwar, R. (2017). Anti-colon cancer activity of Murraya koenigii leaves is due to constituent murrayazoline and O-methylmurrayamine A induced mTOR/AKT downregulation and mitochondrial apoptosis. Biomedicine & Pharmacotherapy, 93, 510–521. https://doi.org/10.1016/J.BIOPHA.2017.06.065

Augusto, T. R., Scheuermann Salinas, E. S., Alencar, S. M., D’Arce, M. A. B. R., De Camargo, A. C., & Vieira, T. M. F. de S. (2014). Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Science and Technology, 34(4), 667–679. https://doi.org/10.1590/1678-457X.6393

Banjarnahor, S. D. S., & Artanti, N. (2014). Antioxidant properties of flavonoids. Medical Journal of Indonesia, 23(4), 239–244. https://doi.org/10.13181/MJI.V23I4.1015

Bhattacharya, K., Samanta, S. K., Tripathi, R., Mallick, A., Chandra, S., Pal, B. C., Shaha, C., & Mandal, C. (2010). Apoptotic effects of mahanine on human leukemic cells are mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways. Biochemical Pharmacology, 79(3), 361–372. https://doi.org/10.1016/J.BCP.2009.09.007

Fakriah, Kurniasih, E., Adriana, & Rusydi. (2019). Sosialisasi bahaya radikal bebas dan fungsi antioksidan alami bagi kesehatan. Jurnal Vokasi, 3(1), 1. https://doi.org/10.30811/VOKASI.V3I1.960

Gangwar, M., Gautam, M. K., Sharma, A. K., Tripathi, Y. B., Goel, R. K., & Nath, G. (2014). Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: An in vitro study. Scientific World Journal, 2014. https://doi.org/10.1155/2014/279451

Gulcin, I. & Alwasel, S.H. (2023). DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. https://doi.org/10.3390/pr11082248

Gunathilaka, T. L., Samarakoon, K., Ranasinghe, P., & Peiris, D. C. (2021). Antiproliferative and Apoptotic Activity of Polyphenol-Rich Crude Methanol Extract of Gracillaria edulis against Human Rhabdomyosarcoma (Rd) and Breast Adenocarcinoma (MCF-7) Cell Lines. 6. Proceedings 2021, 79,6. https://doi.org/10.3390/IECBM2020-08655

Guo, R., Chang, X., Guo, X., Brennan, C. S., Li, T., Fu, X., & Liu, R. H. (2017). Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion. Food & Function, 8(11), 4229–4240. https://doi.org/10.1039/C7FO00917H

Gupta, N., Verma, K., Nalla, S., Kulshreshtha, A., Lall, R., & Prasad, S. (2020). Free Radicals as a Double-Edged Sword: The cancer preventive and therapeutic roles of curcumin. Molecules, 25(22), 5390. https://doi.org/10.3390/MOLECULES25225390

Ismail, A., Noolu, B., Gogulothu, R., Perugu, S., Rajanna, A., & Babu, S. K. (2016). Cytotoxicity and Proteasome Inhibition by Alkaloid Extract from Murraya koenigii Leaves in Breast Cancer Cells-Molecular Docking Studies. Journal of Medicinal Food, 19(12), 1155–1165. https://doi.org/10.1089/JMF.2016.3767

Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology 2024 98:5, 98(5), 1323–1367. https://doi.org/10.1007/s00204-024-03696-4

Kamalidehghan, B., Ahmadipour, F., Ibrahim Noordin, M., Mohan, S., Arya, A., Paydar, M., Yeng, L. C., Keong, Y. S., Ebrahimi Nigjeh, S., Fani, S., Chung, L. Y., Aspollah Sukari, M., & Firoozi, M. (2015). Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24-/low): an in vitro study. Drug Design, Development and Therapy, 1193. https://doi.org/10.2147/DDDT.S72127

Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and Nutritional Antioxidants in Human Diseases. Frontiers in Physiology, 9(MAY). https://doi.org/10.3389/FPHYS.2018.00477

Luna-Guevara, M. L., Luna-Guevara, J. J., Hernández-Carranza, P., Ruíz-Espinosa, H., & Ochoa-Velasco, C. E. (2018). Phenolic Compounds: A Good Choice Against Chronic Degenerative Diseases. Studies in Natural Products Chemistry, 59, 79–108. https://doi.org/10.1016/B978-0-444-64179-3.00003-7

Ma, Q. G., Xu, K., Sang, Z. P., Wei, R. R., Liu, W. M., Su, Y. L., Yang, J. B., Wang, A. G., Ji, T. F., & Li, L. J. (2016). Alkenes with antioxidative activities from Murraya koenigii (L.) Spreng. Bioorganic & Medicinal Chemistry Letters, 26(3), 799–803. https://doi.org/10.1016/J.BMCL.2015.12.091

Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/OXYGEN2020006

Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C.-Y. O., & Lima, G. P. P. (2017). Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. Phenolic Compounds - Biological Activity. https://doi.org/10.5772/66368

Moalin, M., Van Strijdonck, G. P. F., Beckers, M., Hagemen, G. J., Borm, P. J., Bast, A., & Haenen, G. R. M. M. (2011). A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 16(11), 9636–9650. https://doi.org/10.3390/MOLECULES16119636

Muscolo, A., Mariateresa, O., Giulio, T., & Mariateresa, R. (2024). Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. International Journal of Molecular Sciences 25(6), 3264. https://doi.org/10.3390/IJMS25063264

Noolu, B., Ajumeera, R., Chauhan, A., Nagalla, B., Manchala, R., & Ismail, A. (2013). Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells. BMC Complementary and Alternative Medicine, 13(1), 1–17. https://doi.org/10.1186/1472-6882-13-7/FIGURES/12

Noolu, B., & Ismail, A. (2015). Anti-proliferative and proteasome Inhibitory activity of Murraya koenigii leaf extract in Human Cancer Cell Lines. Discovery Phytomedicine, 2(1). https://doi.org/10.15562/PHYTOMEDICINE.2015.18

Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O., & Ramírez-Valdespino, C. A. (2022). Subtypes of Breast Cancer. Breast Cancer, 31–42. https://doi.org/10.36255/EXON-PUBLICATIONS-BREAST-CANCER-SUBTYPES

Parithy, M. T., Mohd Zin, Z., Hasmadi, M., Rusli, N. D., Smedley, K. L., & Zainol, M. K. (2021). Antioxidants properties of Murraya Koenigii: A comparative study of three different extraction methods. Food Research, 5(1), 43–49. https://doi.org/10.26656/FR.2017.5(1).307

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

Pratitis, V. E., Puspitasari, P. A., Hanbal, M. M., Tsabitah, K., Juliadmi, D., Saksono, B., & Wijayanti, N. (2024). The Cytotoxicity of Agaro-Oligosaccharides and Neoagaro-Oligosaccharides on Macrophage Cells. Mutiara Medika: Jurnal Kedokteran dan Kesehatan, 24(2), 79–84. https://doi.org/10.18196/MMJKK.V24I2.21059

Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering, 40(6), 943–957. https://doi.org/10.1007/S00449-017-1758-2

Salomi, M. V., & Manimekalai, R. (2016). Phytochemical Analysis and Antimicrobial Activity of Four Different Extracts from the Leaves of Murraya koenigii. International Journal of Current Microbiology and Applied Sciences, 5(7), 875–882. https://doi.org/10.20546/IJCMAS.2016.507.100

Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654–658. https://doi.org/10.1016/J.FOODCHEM.2008.06.026

Soleimani, M., & Sajedi, N. (2020). Myricetin Apoptotic Effects on T47D Breast Cancer Cells is a P53-Independent Approach. Asian Pacific Journal of Cancer Prevention : APJCP, 21(12), 3697. https://doi.org/10.31557/APJCP.2020.21.12.3697

Sujana, P.K.W. & Wijayanti N (2022). Phytochemical and antioxidant properties of Syzygium zollingerianum leaves extract. Biodiversitas, 23 (2): 916-921. https://doi.org/10.13057/biodiv/d230233

Sukweenadhi, J., Yunita, O., Setiawan, F., Kartini, Siagian, M. T., Danduru, A. P., & Avanti, C. (2020). Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas, 21(5), 2062–2067. https://doi.org/10.13057/BIODIV/D210532

Sun, J., Fu, X., Wang, Y., Liu, Y., Zhang, Y., Hao, T., & Hu, X. (2016). Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration. American Journal of Translational Research, 8(7), 3077. https://pmc.ncbi.nlm.nih.gov/articles/PMC4969444/

Suthar, P., Kumar, S., Kumar, V., Vaidya, D., Sharma, A., & Sharma, A. (2022). Murraya koenigii (L.) Spreng: Speculative ethnobotanical perspectives of ubiquitous herb with versatile nutra/functional properties. South African Journal of Botany, 145, 111–134. https://doi.org/10.1016/J.SAJB.2021.11.025

Yeap, S. K., Abu, N., Mohamad, N. E., Beh, B. K., Ho, W. Y., Ebrahimi, S., Yusof, H. M., Ky, H., Tan, S. W., & Alitheen, N. B. (2015). Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/S12906-015-0832-Z

Zaric, B. L., Macvanin, M. T., & Isenovic, E. R. (2023). Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. The International Journal of Biochemistry & Cell Biology, 154, 106346. https://doi.org/10.1016/J.BIOCEL.2022.106346

Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G., & Alwis, D. D. D. H. (2021). Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 7(7). https://doi.org/10.1016/J.HELIYON.2021.E07449

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 11, 12–17. https://doi.org/10.1016/J.JARMAP.2018.07.003

Arjun, P., Semwal, D., Semwal, R., Malaisamy, M., Sivaraj, C., & Vijayakumar, S. (2017). Total Phenolic Content, Volatile Constituents and Antioxidative Effect of Coriandrum sativum, Murraya koenigii and Mentha arvensis. The Natural Products Journal, 7(1), 65–74. https://doi.org/10.2174/2210315506666161121104251

Arun, A., Patel, O. P. S., Saini, D., Yadav, P. P., & Konwar, R. (2017). Anti-colon cancer activity of Murraya koenigii leaves is due to constituent murrayazoline and O-methylmurrayamine A induced mTOR/AKT downregulation and mitochondrial apoptosis. Biomedicine & Pharmacotherapy, 93, 510–521. https://doi.org/10.1016/J.BIOPHA.2017.06.065

Augusto, T. R., Scheuermann Salinas, E. S., Alencar, S. M., D’Arce, M. A. B. R., De Camargo, A. C., & Vieira, T. M. F. de S. (2014). Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Science and Technology, 34(4), 667–679. https://doi.org/10.1590/1678-457X.6393

Banjarnahor, S. D. S., & Artanti, N. (2014). Antioxidant properties of flavonoids. Medical Journal of Indonesia, 23(4), 239–244. https://doi.org/10.13181/MJI.V23I4.1015

Bhattacharya, K., Samanta, S. K., Tripathi, R., Mallick, A., Chandra, S., Pal, B. C., Shaha, C., & Mandal, C. (2010). Apoptotic effects of mahanine on human leukemic cells are mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways. Biochemical Pharmacology, 79(3), 361–372. https://doi.org/10.1016/J.BCP.2009.09.007

Fakriah, Kurniasih, E., Adriana, & Rusydi. (2019). Sosialisasi bahaya radikal bebas dan fungsi antioksidan alami bagi kesehatan. Jurnal Vokasi, 3(1), 1. https://doi.org/10.30811/VOKASI.V3I1.960

Gulcin, I. & Alwasel, S.H. (2023). DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. https://doi.org/10.3390/pr11082248

Gunathilaka, T. L., Samarakoon, K., Ranasinghe, P., & Peiris, D. C. (2021). Antiproliferative and Apoptotic Activity of Polyphenol-Rich Crude Methanol Extract of Gracillaria edulis against Human Rhabdomyosarcoma (Rd) and Breast Adenocarcinoma (MCF-7) Cell Lines. 6. Proceedings 2021, 79,6. https://doi.org/10.3390/IECBM2020-08655

Gupta, N., Verma, K., Nalla, S., Kulshreshtha, A., Lall, R., & Prasad, S. (2020). Free Radicals as a Double-Edged Sword: The cancer preventive and therapeutic roles of curcumin. Molecules, 25(22), 5390. https://doi.org/10.3390/MOLECULES25225390

Ismail, A., Noolu, B., Gogulothu, R., Perugu, S., Rajanna, A., & Babu, S. K. (2016). Cytotoxicity and Proteasome Inhibition by Alkaloid Extract from Murraya koenigii Leaves in Breast Cancer Cells-Molecular Docking Studies. Journal of Medicinal Food, 19(12), 1155–1165. https://doi.org/10.1089/JMF.2016.3767

Kamalidehghan, B., Ahmadipour, F., Ibrahim Noordin, M., Mohan, S., Arya, A., Paydar, M., Yeng, L. C., Keong, Y. S., Ebrahimi Nigjeh, S., Fani, S., Chung, L. Y., Aspollah Sukari, M., & Firoozi, M. (2015). Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24-/low): an in vitro study. Drug Design, Development and Therapy, 1193. https://doi.org/10.2147/DDDT.S72127

Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and Nutritional Antioxidants in Human Diseases. Frontiers in Physiology, 9(MAY). https://doi.org/10.3389/FPHYS.2018.00477

Luna-Guevara, M. L., Luna-Guevara, J. J., Hernández-Carranza, P., Ruíz-Espinosa, H., & Ochoa-Velasco, C. E. (2018). Phenolic Compounds: A Good Choice Against Chronic Degenerative Diseases. Studies in Natural Products Chemistry, 59, 79–108. https://doi.org/10.1016/B978-0-444-64179-3.00003-7

Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/OXYGEN2020006

Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C.-Y. O., & Lima, G. P. P. (2017). Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. Phenolic Compounds - Biological Activity. https://doi.org/10.5772/66368

Moalin, M., Van Strijdonck, G. P. F., Beckers, M., Hagemen, G. J., Borm, P. J., Bast, A., & Haenen, G. R. M. M. (2011). A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 16(11), 9636–9650. https://doi.org/10.3390/MOLECULES16119636

Noolu, B., Ajumeera, R., Chauhan, A., Nagalla, B., Manchala, R., & Ismail, A. (2013). Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells. BMC Complementary and Alternative Medicine, 13(1), 1–17. https://doi.org/10.1186/1472-6882-13-7/FIGURES/12

Noolu, B., & Ismail, A. (2015). Anti-proliferative and proteasome Inhibitory activity of Murraya koenigii leaf extract in Human Cancer Cell Lines. Discovery Phytomedicine, 2(1). https://doi.org/10.15562/PHYTOMEDICINE.2015.18

Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O., & Ramírez-Valdespino, C. A. (2022). Subtypes of Breast Cancer. Breast Cancer, 31–42. https://doi.org/10.36255/EXON-PUBLICATIONS-BREAST-CANCER-SUBTYPES

Parithy, M. T., Mohd Zin, Z., Hasmadi, M., Rusli, N. D., Smedley, K. L., & Zainol, M. K. (2021). Antioxidants properties of Murraya Koenigii: A comparative study of three different extraction methods. Food Research, 5(1), 43–49. https://doi.org/10.26656/FR.2017.5(1).307

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

Pratitis, V. E., Puspitasari, P. A., Hanbal, M. M., Tsabitah, K., Juliadmi, D., Saksono, B., & Wijayanti, N. (2024). The Cytotoxicity of Agaro-Oligosaccharides and Neoagaro-Oligosaccharides on Macrophage Cells. Mutiara Medika: Jurnal Kedokteran Dan Kesehatan, 24(2), 79–84. https://doi.org/10.18196/MMJKK.V24I2.21059

Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering, 40(6), 943–957. https://doi.org/10.1007/S00449-017-1758-2

Salomi, M. V., & Manimekalai, R. (2016). Phytochemical Analysis and Antimicrobial Activity of Four Different Extracts from the Leaves of Murraya koenigii. International Journal of Current Microbiology and Applied Sciences, 5(7), 875–882. https://doi.org/10.20546/IJCMAS.2016.507.100

Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654–658. https://doi.org/10.1016/J.FOODCHEM.2008.06.026

Soleimani, M., & Sajedi, N. (2020). Myricetin Apoptotic Effects on T47D Breast Cancer Cells is a P53-Independent Approach. Asian Pacific Journal of Cancer Prevention : APJCP, 21(12), 3697. https://doi.org/10.31557/APJCP.2020.21.12.3697

Sujana, P.K.W. & Wijayanti N (2022). Phytochemical and antioxidant properties of Syzygium zollingerianum leaves extract. Biodiversitas, 23 (2): 916-921. https://doi.org/10.13057/biodiv/d230233

Sukweenadhi, J., Yunita, O., Setiawan, F., Kartini, Siagian, M. T., Danduru, A. P., & Avanti, C. (2020). Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas, 21(5), 2062–2067. https://doi.org/10.13057/BIODIV/D210532

Sun, J., Fu, X., Wang, Y., Liu, Y., Zhang, Y., Hao, T., & Hu, X. (2016). Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration. American Journal of Translational Research, 8(7), 3077. https://pmc.ncbi.nlm.nih.gov/articles/PMC4969444/

Suthar, P., Kumar, S., Kumar, V., Vaidya, D., Sharma, A., & Sharma, A. (2022). Murraya koenigii (L.) Spreng: Speculative ethnobotanical perspectives of ubiquitous herb with versatile nutra/functional properties. South African Journal of Botany, 145, 111–134. https://doi.org/10.1016/J.SAJB.2021.11.025

Yeap, S. K., Abu, N., Mohamad, N. E., Beh, B. K., Ho, W. Y., Ebrahimi, S., Yusof, H. M., Ky, H., Tan, S. W., & Alitheen, N. B. (2015). Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/S12906-015-0832-Z

Published

2025-03-03

Issue

Section

Research Articles

Categories

How to Cite

Nisa, M. K., Salamah, R., & Wijayanti, N. (2025). Exploring the Antioxidant and Anti-proliferative Effects of Murraya koenigii (L.) Leaves Methanol Extract on T47D Breast Cancer Cell Lines. GHMJ (Global Health Management Journal), 8(1), 62–71. https://doi.org/10.35898/ghmj-811204

Plaudit

Share

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.