Exploring the Antioxidant and Anti-proliferative Effects of Murraya koenigii (L.) Leaves Methanol Extract on T47D Breast Cancer Cell Lines
DOI:
https://doi.org/10.35898/ghmj-811204Keywords:
Antioxidant, Anti-proliferative, Cytotoxicity, Murraya koenigii, T47D Breast CancerAbstract
Background: Murraya koenigii (Curry) leaves are herbal plants that have bioactive compounds such as phenolics, flavonoids, and alkaloids that function as antioxidants and anti-cancers.
Aims: This study aimed to quantitatively determine the bioactive compounds in curry leaves by calculating phenolic, flavonoid, and alkaloid content. Its potential as an antioxidant and anti-proliferative compound in T47D breast cancer cell lines was also analyzed.
Methods: Murraya koenigii leaves extract was obtained by maceration using 80% methanol (1:5 w/v), then the antioxidant and anti-proliferative test was carried out using the 1,1-Diphenyl-2-Pycrylhidracyl (DPPH) and MTT (-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, respectively, followed by flow cytometry to determine the apoptotic activity of the extract on T47D breast cancer cell lines.
Results: The results for the bioactive compounds in the methanol extract of Murraya koenigii leaves were 156.62±1.49 mg/g phenolics, 99.19±0.25 mg/g flavonoids, and 2.90±0.01 mg/g alkaloids. The IC50 value for antioxidant activity was 25.058±2.2 μg/ml and showed an anti-proliferative effect on T47D cells in a dose-dependent manner with IC50 74.71±5.45 μg/ml for cytotoxicity. Furthermore, flow cytometry showed that a concentration of 1/16 IC50 has the best results for apoptosis.
Conclusion: The methanol extract of Murraya koenigii leaves has the potential as an antioxidant and anti-proliferative agent and can induce apoptosis of T47D cells.
Downloads
References
Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G., & Alwis, D. D. D. H. (2021). Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 7(7). https://doi.org/10.1016/J.HELIYON.2021.E07449
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 11, 12–17. https://doi.org/10.1016/J.JARMAP.2018.07.003
Alshehade, S. A., Almoustafa, H. A., Alshawsh, M. A., & Chik, Z. (2024). Flow cytometry-based quantitative analysis of cellular protein expression in apoptosis subpopulations: A protocol. Heliyon, 10(13), e33665. https://doi.org/10.1016/J.HELIYON.2024.E33665
Arjun, P., Semwal, D., Semwal, R., Malaisamy, M., Sivaraj, C., & Vijayakumar, S. (2017). Total Phenolic Content, Volatile Constituents and Antioxidative Effect of Coriandrum sativum, Murraya koenigii and Mentha arvensis. The Natural Products Journal, 7(1), 65–74. https://doi.org/10.2174/2210315506666161121104251
Arun, A., Patel, O. P. S., Saini, D., Yadav, P. P., & Konwar, R. (2017). Anti-colon cancer activity of Murraya koenigii leaves is due to constituent murrayazoline and O-methylmurrayamine A induced mTOR/AKT downregulation and mitochondrial apoptosis. Biomedicine & Pharmacotherapy, 93, 510–521. https://doi.org/10.1016/J.BIOPHA.2017.06.065
Augusto, T. R., Scheuermann Salinas, E. S., Alencar, S. M., D’Arce, M. A. B. R., De Camargo, A. C., & Vieira, T. M. F. de S. (2014). Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Science and Technology, 34(4), 667–679. https://doi.org/10.1590/1678-457X.6393
Banjarnahor, S. D. S., & Artanti, N. (2014). Antioxidant properties of flavonoids. Medical Journal of Indonesia, 23(4), 239–244. https://doi.org/10.13181/MJI.V23I4.1015
Bhattacharya, K., Samanta, S. K., Tripathi, R., Mallick, A., Chandra, S., Pal, B. C., Shaha, C., & Mandal, C. (2010). Apoptotic effects of mahanine on human leukemic cells are mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways. Biochemical Pharmacology, 79(3), 361–372. https://doi.org/10.1016/J.BCP.2009.09.007
Fakriah, Kurniasih, E., Adriana, & Rusydi. (2019). Sosialisasi bahaya radikal bebas dan fungsi antioksidan alami bagi kesehatan. Jurnal Vokasi, 3(1), 1. https://doi.org/10.30811/VOKASI.V3I1.960
Gangwar, M., Gautam, M. K., Sharma, A. K., Tripathi, Y. B., Goel, R. K., & Nath, G. (2014). Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: An in vitro study. Scientific World Journal, 2014. https://doi.org/10.1155/2014/279451
Gulcin, I. & Alwasel, S.H. (2023). DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. https://doi.org/10.3390/pr11082248
Gunathilaka, T. L., Samarakoon, K., Ranasinghe, P., & Peiris, D. C. (2021). Antiproliferative and Apoptotic Activity of Polyphenol-Rich Crude Methanol Extract of Gracillaria edulis against Human Rhabdomyosarcoma (Rd) and Breast Adenocarcinoma (MCF-7) Cell Lines. 6. Proceedings 2021, 79,6. https://doi.org/10.3390/IECBM2020-08655
Guo, R., Chang, X., Guo, X., Brennan, C. S., Li, T., Fu, X., & Liu, R. H. (2017). Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion. Food & Function, 8(11), 4229–4240. https://doi.org/10.1039/C7FO00917H
Gupta, N., Verma, K., Nalla, S., Kulshreshtha, A., Lall, R., & Prasad, S. (2020). Free Radicals as a Double-Edged Sword: The cancer preventive and therapeutic roles of curcumin. Molecules, 25(22), 5390. https://doi.org/10.3390/MOLECULES25225390
Ismail, A., Noolu, B., Gogulothu, R., Perugu, S., Rajanna, A., & Babu, S. K. (2016). Cytotoxicity and Proteasome Inhibition by Alkaloid Extract from Murraya koenigii Leaves in Breast Cancer Cells-Molecular Docking Studies. Journal of Medicinal Food, 19(12), 1155–1165. https://doi.org/10.1089/JMF.2016.3767
Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology 2024 98:5, 98(5), 1323–1367. https://doi.org/10.1007/s00204-024-03696-4
Kamalidehghan, B., Ahmadipour, F., Ibrahim Noordin, M., Mohan, S., Arya, A., Paydar, M., Yeng, L. C., Keong, Y. S., Ebrahimi Nigjeh, S., Fani, S., Chung, L. Y., Aspollah Sukari, M., & Firoozi, M. (2015). Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24-/low): an in vitro study. Drug Design, Development and Therapy, 1193. https://doi.org/10.2147/DDDT.S72127
Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and Nutritional Antioxidants in Human Diseases. Frontiers in Physiology, 9(MAY). https://doi.org/10.3389/FPHYS.2018.00477
Luna-Guevara, M. L., Luna-Guevara, J. J., Hernández-Carranza, P., Ruíz-Espinosa, H., & Ochoa-Velasco, C. E. (2018). Phenolic Compounds: A Good Choice Against Chronic Degenerative Diseases. Studies in Natural Products Chemistry, 59, 79–108. https://doi.org/10.1016/B978-0-444-64179-3.00003-7
Ma, Q. G., Xu, K., Sang, Z. P., Wei, R. R., Liu, W. M., Su, Y. L., Yang, J. B., Wang, A. G., Ji, T. F., & Li, L. J. (2016). Alkenes with antioxidative activities from Murraya koenigii (L.) Spreng. Bioorganic & Medicinal Chemistry Letters, 26(3), 799–803. https://doi.org/10.1016/J.BMCL.2015.12.091
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/OXYGEN2020006
Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C.-Y. O., & Lima, G. P. P. (2017). Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. Phenolic Compounds - Biological Activity. https://doi.org/10.5772/66368
Moalin, M., Van Strijdonck, G. P. F., Beckers, M., Hagemen, G. J., Borm, P. J., Bast, A., & Haenen, G. R. M. M. (2011). A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 16(11), 9636–9650. https://doi.org/10.3390/MOLECULES16119636
Muscolo, A., Mariateresa, O., Giulio, T., & Mariateresa, R. (2024). Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. International Journal of Molecular Sciences 25(6), 3264. https://doi.org/10.3390/IJMS25063264
Noolu, B., Ajumeera, R., Chauhan, A., Nagalla, B., Manchala, R., & Ismail, A. (2013). Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells. BMC Complementary and Alternative Medicine, 13(1), 1–17. https://doi.org/10.1186/1472-6882-13-7/FIGURES/12
Noolu, B., & Ismail, A. (2015). Anti-proliferative and proteasome Inhibitory activity of Murraya koenigii leaf extract in Human Cancer Cell Lines. Discovery Phytomedicine, 2(1). https://doi.org/10.15562/PHYTOMEDICINE.2015.18
Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O., & Ramírez-Valdespino, C. A. (2022). Subtypes of Breast Cancer. Breast Cancer, 31–42. https://doi.org/10.36255/EXON-PUBLICATIONS-BREAST-CANCER-SUBTYPES
Parithy, M. T., Mohd Zin, Z., Hasmadi, M., Rusli, N. D., Smedley, K. L., & Zainol, M. K. (2021). Antioxidants properties of Murraya Koenigii: A comparative study of three different extraction methods. Food Research, 5(1), 43–49. https://doi.org/10.26656/FR.2017.5(1).307
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Pratitis, V. E., Puspitasari, P. A., Hanbal, M. M., Tsabitah, K., Juliadmi, D., Saksono, B., & Wijayanti, N. (2024). The Cytotoxicity of Agaro-Oligosaccharides and Neoagaro-Oligosaccharides on Macrophage Cells. Mutiara Medika: Jurnal Kedokteran dan Kesehatan, 24(2), 79–84. https://doi.org/10.18196/MMJKK.V24I2.21059
Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering, 40(6), 943–957. https://doi.org/10.1007/S00449-017-1758-2
Salomi, M. V., & Manimekalai, R. (2016). Phytochemical Analysis and Antimicrobial Activity of Four Different Extracts from the Leaves of Murraya koenigii. International Journal of Current Microbiology and Applied Sciences, 5(7), 875–882. https://doi.org/10.20546/IJCMAS.2016.507.100
Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654–658. https://doi.org/10.1016/J.FOODCHEM.2008.06.026
Soleimani, M., & Sajedi, N. (2020). Myricetin Apoptotic Effects on T47D Breast Cancer Cells is a P53-Independent Approach. Asian Pacific Journal of Cancer Prevention : APJCP, 21(12), 3697. https://doi.org/10.31557/APJCP.2020.21.12.3697
Sujana, P.K.W. & Wijayanti N (2022). Phytochemical and antioxidant properties of Syzygium zollingerianum leaves extract. Biodiversitas, 23 (2): 916-921. https://doi.org/10.13057/biodiv/d230233
Sukweenadhi, J., Yunita, O., Setiawan, F., Kartini, Siagian, M. T., Danduru, A. P., & Avanti, C. (2020). Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas, 21(5), 2062–2067. https://doi.org/10.13057/BIODIV/D210532
Sun, J., Fu, X., Wang, Y., Liu, Y., Zhang, Y., Hao, T., & Hu, X. (2016). Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration. American Journal of Translational Research, 8(7), 3077. https://pmc.ncbi.nlm.nih.gov/articles/PMC4969444/
Suthar, P., Kumar, S., Kumar, V., Vaidya, D., Sharma, A., & Sharma, A. (2022). Murraya koenigii (L.) Spreng: Speculative ethnobotanical perspectives of ubiquitous herb with versatile nutra/functional properties. South African Journal of Botany, 145, 111–134. https://doi.org/10.1016/J.SAJB.2021.11.025
Yeap, S. K., Abu, N., Mohamad, N. E., Beh, B. K., Ho, W. Y., Ebrahimi, S., Yusof, H. M., Ky, H., Tan, S. W., & Alitheen, N. B. (2015). Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/S12906-015-0832-Z
Zaric, B. L., Macvanin, M. T., & Isenovic, E. R. (2023). Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. The International Journal of Biochemistry & Cell Biology, 154, 106346. https://doi.org/10.1016/J.BIOCEL.2022.106346
Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G., & Alwis, D. D. D. H. (2021). Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 7(7). https://doi.org/10.1016/J.HELIYON.2021.E07449
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 11, 12–17. https://doi.org/10.1016/J.JARMAP.2018.07.003
Arjun, P., Semwal, D., Semwal, R., Malaisamy, M., Sivaraj, C., & Vijayakumar, S. (2017). Total Phenolic Content, Volatile Constituents and Antioxidative Effect of Coriandrum sativum, Murraya koenigii and Mentha arvensis. The Natural Products Journal, 7(1), 65–74. https://doi.org/10.2174/2210315506666161121104251
Arun, A., Patel, O. P. S., Saini, D., Yadav, P. P., & Konwar, R. (2017). Anti-colon cancer activity of Murraya koenigii leaves is due to constituent murrayazoline and O-methylmurrayamine A induced mTOR/AKT downregulation and mitochondrial apoptosis. Biomedicine & Pharmacotherapy, 93, 510–521. https://doi.org/10.1016/J.BIOPHA.2017.06.065
Augusto, T. R., Scheuermann Salinas, E. S., Alencar, S. M., D’Arce, M. A. B. R., De Camargo, A. C., & Vieira, T. M. F. de S. (2014). Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Science and Technology, 34(4), 667–679. https://doi.org/10.1590/1678-457X.6393
Banjarnahor, S. D. S., & Artanti, N. (2014). Antioxidant properties of flavonoids. Medical Journal of Indonesia, 23(4), 239–244. https://doi.org/10.13181/MJI.V23I4.1015
Bhattacharya, K., Samanta, S. K., Tripathi, R., Mallick, A., Chandra, S., Pal, B. C., Shaha, C., & Mandal, C. (2010). Apoptotic effects of mahanine on human leukemic cells are mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways. Biochemical Pharmacology, 79(3), 361–372. https://doi.org/10.1016/J.BCP.2009.09.007
Fakriah, Kurniasih, E., Adriana, & Rusydi. (2019). Sosialisasi bahaya radikal bebas dan fungsi antioksidan alami bagi kesehatan. Jurnal Vokasi, 3(1), 1. https://doi.org/10.30811/VOKASI.V3I1.960
Gulcin, I. & Alwasel, S.H. (2023). DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. https://doi.org/10.3390/pr11082248
Gunathilaka, T. L., Samarakoon, K., Ranasinghe, P., & Peiris, D. C. (2021). Antiproliferative and Apoptotic Activity of Polyphenol-Rich Crude Methanol Extract of Gracillaria edulis against Human Rhabdomyosarcoma (Rd) and Breast Adenocarcinoma (MCF-7) Cell Lines. 6. Proceedings 2021, 79,6. https://doi.org/10.3390/IECBM2020-08655
Gupta, N., Verma, K., Nalla, S., Kulshreshtha, A., Lall, R., & Prasad, S. (2020). Free Radicals as a Double-Edged Sword: The cancer preventive and therapeutic roles of curcumin. Molecules, 25(22), 5390. https://doi.org/10.3390/MOLECULES25225390
Ismail, A., Noolu, B., Gogulothu, R., Perugu, S., Rajanna, A., & Babu, S. K. (2016). Cytotoxicity and Proteasome Inhibition by Alkaloid Extract from Murraya koenigii Leaves in Breast Cancer Cells-Molecular Docking Studies. Journal of Medicinal Food, 19(12), 1155–1165. https://doi.org/10.1089/JMF.2016.3767
Kamalidehghan, B., Ahmadipour, F., Ibrahim Noordin, M., Mohan, S., Arya, A., Paydar, M., Yeng, L. C., Keong, Y. S., Ebrahimi Nigjeh, S., Fani, S., Chung, L. Y., Aspollah Sukari, M., & Firoozi, M. (2015). Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24-/low): an in vitro study. Drug Design, Development and Therapy, 1193. https://doi.org/10.2147/DDDT.S72127
Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and Nutritional Antioxidants in Human Diseases. Frontiers in Physiology, 9(MAY). https://doi.org/10.3389/FPHYS.2018.00477
Luna-Guevara, M. L., Luna-Guevara, J. J., Hernández-Carranza, P., Ruíz-Espinosa, H., & Ochoa-Velasco, C. E. (2018). Phenolic Compounds: A Good Choice Against Chronic Degenerative Diseases. Studies in Natural Products Chemistry, 59, 79–108. https://doi.org/10.1016/B978-0-444-64179-3.00003-7
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/OXYGEN2020006
Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C.-Y. O., & Lima, G. P. P. (2017). Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. Phenolic Compounds - Biological Activity. https://doi.org/10.5772/66368
Moalin, M., Van Strijdonck, G. P. F., Beckers, M., Hagemen, G. J., Borm, P. J., Bast, A., & Haenen, G. R. M. M. (2011). A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 16(11), 9636–9650. https://doi.org/10.3390/MOLECULES16119636
Noolu, B., Ajumeera, R., Chauhan, A., Nagalla, B., Manchala, R., & Ismail, A. (2013). Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells. BMC Complementary and Alternative Medicine, 13(1), 1–17. https://doi.org/10.1186/1472-6882-13-7/FIGURES/12
Noolu, B., & Ismail, A. (2015). Anti-proliferative and proteasome Inhibitory activity of Murraya koenigii leaf extract in Human Cancer Cell Lines. Discovery Phytomedicine, 2(1). https://doi.org/10.15562/PHYTOMEDICINE.2015.18
Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O., & Ramírez-Valdespino, C. A. (2022). Subtypes of Breast Cancer. Breast Cancer, 31–42. https://doi.org/10.36255/EXON-PUBLICATIONS-BREAST-CANCER-SUBTYPES
Parithy, M. T., Mohd Zin, Z., Hasmadi, M., Rusli, N. D., Smedley, K. L., & Zainol, M. K. (2021). Antioxidants properties of Murraya Koenigii: A comparative study of three different extraction methods. Food Research, 5(1), 43–49. https://doi.org/10.26656/FR.2017.5(1).307
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Pratitis, V. E., Puspitasari, P. A., Hanbal, M. M., Tsabitah, K., Juliadmi, D., Saksono, B., & Wijayanti, N. (2024). The Cytotoxicity of Agaro-Oligosaccharides and Neoagaro-Oligosaccharides on Macrophage Cells. Mutiara Medika: Jurnal Kedokteran Dan Kesehatan, 24(2), 79–84. https://doi.org/10.18196/MMJKK.V24I2.21059
Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering, 40(6), 943–957. https://doi.org/10.1007/S00449-017-1758-2
Salomi, M. V., & Manimekalai, R. (2016). Phytochemical Analysis and Antimicrobial Activity of Four Different Extracts from the Leaves of Murraya koenigii. International Journal of Current Microbiology and Applied Sciences, 5(7), 875–882. https://doi.org/10.20546/IJCMAS.2016.507.100
Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654–658. https://doi.org/10.1016/J.FOODCHEM.2008.06.026
Soleimani, M., & Sajedi, N. (2020). Myricetin Apoptotic Effects on T47D Breast Cancer Cells is a P53-Independent Approach. Asian Pacific Journal of Cancer Prevention : APJCP, 21(12), 3697. https://doi.org/10.31557/APJCP.2020.21.12.3697
Sujana, P.K.W. & Wijayanti N (2022). Phytochemical and antioxidant properties of Syzygium zollingerianum leaves extract. Biodiversitas, 23 (2): 916-921. https://doi.org/10.13057/biodiv/d230233
Sukweenadhi, J., Yunita, O., Setiawan, F., Kartini, Siagian, M. T., Danduru, A. P., & Avanti, C. (2020). Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas, 21(5), 2062–2067. https://doi.org/10.13057/BIODIV/D210532
Sun, J., Fu, X., Wang, Y., Liu, Y., Zhang, Y., Hao, T., & Hu, X. (2016). Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration. American Journal of Translational Research, 8(7), 3077. https://pmc.ncbi.nlm.nih.gov/articles/PMC4969444/
Suthar, P., Kumar, S., Kumar, V., Vaidya, D., Sharma, A., & Sharma, A. (2022). Murraya koenigii (L.) Spreng: Speculative ethnobotanical perspectives of ubiquitous herb with versatile nutra/functional properties. South African Journal of Botany, 145, 111–134. https://doi.org/10.1016/J.SAJB.2021.11.025
Yeap, S. K., Abu, N., Mohamad, N. E., Beh, B. K., Ho, W. Y., Ebrahimi, S., Yusof, H. M., Ky, H., Tan, S. W., & Alitheen, N. B. (2015). Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/S12906-015-0832-Z
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Mutia Khoirun Nisa, M.Sc., Rohmi Salamah, M.Sc., Dr.biol.hom. Nastiti Wijayanti, M.Si.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
GHMJ (Global Health Management Journal) conforms fully to The Budapest Open Access Initiative (BOAI) and DOAJ Open Access Definition. Authors, readers, and reviewers are free to Share ” copy and redistribute the material in any medium or format, and Adapt ” remix, transform, and build upon the material. Author(s) retain unrestricted copyrights and publishing rights of their work. The licensor cannot revoke these freedoms as long as you follow the license terms. Learn the details at the License policy.