UPDATE: METABOLIC DISORDERS OF PREECLAMPSIA A REVIEW

Dian Aprilia Damayanti, Mardiyono Mardiyono

Abstract

Background: Preeclampsia is one of the contributors to the increased maternal morbidity and mortality rates in Indonesia. One of the disorders caused by the preeclampsia is metabolic disorders. The purpose of this study is to provide an overview of metabolic disorders that accompany preeclampsia.

Methods: This was a literature review using electronic databases Science Direct and PubMed. Keywords used in searching literature were ‘preeclampsia’ and ‘metabolism disorder of preeclampsia’ with the year limit between 2010 and 2018. Articles published in English was chosen in this study.

Results: The search found 3,823 articles, of which 14 articles were included in this study. Metabolic disorders that happened in the group of preeclampsia were higher RDW (Red blood cell distribution width), MTT (Biomarker), ADA (adenosine deaminase), CA-125 serum, triglycerides (TG), Angiotensin, cytokinin, CEC (Circulating endothelial cells), lipoprotein and cholesterol. Meanwhile, studies also found that preeclampsia caused the lower selenium serum, aromatase, and thiol-disulphide in the body.Conclusion: Preeclampsia proved causing the disorders of metabolic, mostly in the form of inflammation, endothelial cell damage and oxidative stress. Potential targets are needed for treatment of metabolic disorders in preeclampsia group both medically and non-medically especially for the lipid levels in preeclampsia.

Full Text:

PDF

References

Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet [Internet]. 2010;376(9741):631–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673610602796

Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: Systematic review and meta-analysis. Br Med J. 2007;335(7627):974–7.

Al-Jameil. A Brief Overview of Preeclampsia. J Clin Med Res. 2013;6(1):1–7.

Robert Taylor James Roberts F. Cunningham Marshall Lindheimer. Chesley's Hypertensive Disorders in Pregnancy 4th Edition. 2014.

Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102–13.

Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta. 1983;4(4):397–413.

S. G, A. A, RKS The role of placental oxidative stress and lipid peroxidation in preeclampsia. Obstet Gynecol Surv [Internet]. 2005;60(12):807–16. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L41698019%5Cnhttp://dx.doi.org/10.1097/01.ogx.0000193879.79268.59%5Cnhttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=00297828&id=doi:10.1097%2F01.ogx.0000193879.79268.59&atitle=The+

Kharfi A, Giguère Y, Sapin V, Massé J, Dastugue B, Forest JC. Trophoblastic remodeling in normal and preeclamptic pregnancies: Implication of cytokines. Clin Biochem. 2003;36(5):323–31.

Ramma W, Buhimschi IA, Zhao G, Dulay AT, Nayeri UA, Buhimschi CS, et al. The elevation in circulating anti-angiogenic factors is independent of markers of neutrophil activation in preeclampsia. Angiogenesis. 2012;15(3):333–40.

Khan F, Belch JJF, MacLeod M, Mires G. Changes in endothelial function precede the clinical disease in women in whom preeclampsia develops. Hypertension. 2005;46(5):1123–8.

Das UN. Cytokines, angiogenic, and antiangiogenic factors and bioactive lipids in preeclampsia. Nutrition [Internet]. 2015;31(9):1083–95. Available from: http://dx.doi.org/10.1016/j.nut.2015.03.013

Baumwell S, Karumanchi SA. Pre-eclampsia: Clinical manifestations and molecular mechanisms. Nephron - Clin Pract. 2007;106(2).

Mütze S, Rudnik-Schöneborn S, Zerres K, Rath W. Genes and the preeclampsia syndrome. J Perinat Med. 2008;36(1):38–58.

Eiland E, Nzerue C, Faulkner M. Preeclampsia 2012. J Pregnancy. 2012;2012:1–7.

Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):1066–74.

Huppertz B, Weiss G, Moser G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J Reprod Immunol [Internet]. 2014;101–102(1):74–9. Available from: http://dx.doi.org/10.1016/j.jri.2013.04.003

Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a Disease of the Maternal Endothelium. Circulation. 2011;123(24):2856–69.

Brennan LJ, Morton JS, Davidge ST. Vascular Dysfunction in Preeclampsia. Microcirculation. 2014;21(1):4–14.

de Groot CJM, Davidge ST, Friedman SA, McLaughlin MK, Roberts JM, Taylor RN. Plasma from preeclamptic women increases human endotheial cell prostacyclin production without changes in cellular enzyme activity or mass. Am J Obstet Gynecol. 1995;172(3):976–85.

Practice AC on O. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. American College of Obstetricians and Gynecologists. Int J Gynaecol Obs [Internet]. 2002;77(1):67–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12094777%5Cnhttp://ac.els-cdn.com/S0020729202800029/1-s2.0-S0020729202800029-main.pdf?_tid=175ee400-e1cd-11e5-a98f-00000aacb362&acdnat=1457070848_8d50b6d8ea2ad4e14fda863560065b29

Thangaratinam S, Ismail KMK, Sharp S, Coomarasamy A, Khan KS. Accuracy of serum uric acid in predicting complications of pre-eclampsia: A systematic review. BJOG An Int J Obstet Gynaecol. 2006;113(4):369–78.

Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol [Internet]. 2014;10(8):466–80. Available from: http://dx.doi.org/10.1038/nrneph.2014.102

Hladunewich M, Karumanchi SA, Lafayette RA. Pathophysiology of the clinical manifestations of preeclampsia. Clin J Am Soc Nephrol. 2007;2(3):543–9.

Arulkumaran N, Lightstone L. Severe pre-eclampsia and hypertensive crises. Best Pract Res Clin Obstet Gynaecol [Internet]. 2013;27(6):877–84. Available from: http://dx.doi.org/10.1016/j.bpobgyn.2013.07.003

Yılmaz ZV, Yılmaz E, Küçüközkan T. Red blood cell distribution width: A simple parameter in preeclampsia. Pregnancy Hypertens. 2016;6(4):285–7.

Berkane N, Liere P, Lefevre G, Alfaidy N, Nahed RA, Vincent J, et al. Abnormal steroidogenesis and aromatase activity in preeclampsia. Placenta [Internet]. 2018;69:40–9. Available from: https://doi.org/10.1016/j.placenta.2018.07.004

Alpoim PN, Perucci LO, Godoi LC, Goulart COL, Dusse LMS. Oxidative stress markers and thrombomodulin plasma levels in women with early and late severe preeclampsia. Clin Chim Acta [Internet]. 2018;483(February):234–8. Available from: https://doi.org/10.1016/j.cca.2018.04.039

Giorgi VS, Witkin SS, Bannwart-Castro CF, Sartori MS, Romão-Veiga M, Borges VTM, et al. Elevated circulating adenosine deaminase activity in women with preeclampsia: association with pro-inflammatory cytokine production and uric acid levels. Pregnancy Hypertens [Internet]. 2016;6(4):400–5. Available from: http://dx.doi.org/10.1016/j.preghy.2016.09.004

Haque MM, Moghal MMR, Sarwar MS, Anonna SN, Akter M, Karmakar P, et al. Low serum selenium concentration is associated with preeclampsia in pregnant women from Bangladesh. J Trace Elem Med Biol. 2016;33:21–5.

Staff AC, Dechend R, Pijnenborg R. Learning from the placenta: Acute atherosis and vascular remodeling in preeclampsia-novel aspects for atherosclerosis and future cardiovascular health. Hypertension. 2010;56(6):1026–34.

Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288(37):26464–72.

MYATT L, WEBSTER RP. Vascular biology of preeclampsia. J Thromb Haemost. 2008;7(3):375–84.

Sánchez-Aranguren LC, Prada CE, Riaño-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia: Role of oxidative stress. Front Physiol. 2014;5(OCT):1–11.

Ghaemi SZ, Forouhari S, Dabbaghmanesh MH, Sayadi M, Bakhshayeshkaram M, Vaziri F, et al. A prospective study of selenium concentration and risk of preeclampsia in pregnant Iranian women: A nested case-control study. Biol Trace Elem Res. 2013;152(2):174–9.

Karaman E, Karaman Y, Alkiş I, Han A, Yildirim G, Ark HC. Maternal serum CA-125 level is elevated in severe preeclampsia. Pregnancy Hypertens. 2014;4(1):29–33.

Keshavarz P, Nobakht M. Gh BF, Mirhafez SR, Nematy M, Azimi-Nezhad M, Afin SA, et al. Alterations in Lipid Profile, Zinc and Copper Levels and Superoxide Dismutase Activities in Normal Pregnancy and Preeclampsia. Am J Med Sci [Internet]. 2017;353(6):552–8. Available from: http://dx.doi.org/10.1016/j.amjms.2017.03.022

Hubel CA, Roberts JM, Taylor RN, Musci TJ, Rogers GM, McLaughlin MK. Lipid peroxidation in pregnancy: New perspectives on preeclampsia. Am J Obstet Gynecol [Internet]. 1989;161(4):1025–34. Available from: http://dx.doi.org/10.1016/0002-9378(89)90778-3

Rosas P, Tufiño C, Bracho Valdes I, Bobadilla Lugo RA. Time course of angiotensin II dependent vascular and metabolic effects of preeclampsia. Pregnancy Hypertens [Internet]. 2017;10:51–6. Available from: http://dx.doi.org/10.1016/j.preghy.2017.06.005

Yuvaci HU, Akdemir N, Bostanci MS, Yazar H, Cevrioglu S, Ozden S, et al. Evaluation of the level of thiol-disulphide homeostasis in patients with mild and severe preeclampsia. Pregnancy Hypertens. 2016;6(4):394–9.

Gratacós E, Martı́n-Gallán P, Cabero L, Dominguez C, Llurba E. A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy. Free Radic Biol Med. 2004;37(4):557–70.

Udenze I, Amadi C, Awolola N, Makwe CC. The role of cytokines as inflammatory mediators in preeclampsia. Pan Afr Med J. 2015;20:1–6.

M. Reslan O, A. Khalil R. Molecular and Vascular Targets in the Pathogenesis and Management of the Hypertension Associated with Preeclampsia. Cardiovasc Hematol Agents Med Chem. 2010;8(4):204–26.

Anim-Nyame N, Ghosh A, Freestone N, Arrigoni FIF. Relationship between insulin resistance and circulating endothelial cells in pre-eclampsia. Gynecol Endocrinol [Internet]. 2015;31(10):788–91. Available from: http://dx.doi.org/10.3109/09513590.2015.1065477

Clarke LA, Hong Y, Eleftheriou D, Shah V, Arrigoni F, Klein NJ, et al. Endothelial injury and repair in systemic vasculitis of the young. Arthritis Rheum. 2010;62(6):1770–80.

Xu CL, Weng BC, Gu HB, Chen L, Lin KS, Lin YP, et al. Study on the correlation between adipocyte fatty-acid binding protein, glucolipid metabolism, and pre-eclampsia. J Obstet Gynaecol Res. 2018;44(4):655–62.

Contini C, Jansen M, König B, Markfeld-Erol F, Kunze M, Zschiedrich S, et al. Lipoprotein turnover and possible remnant accumulation in preeclampsia: Insights from the Freiburg Preeclampsia HELP-apheresis study. Lipids Health Dis. 2018;17(1):1–11.

Maria Procopciuc L, Caracostea G, Maria Hazi G, Nemeti G, Zaharie G, Stamatian F. Maternal/fetal eNOS-Glu298Asp genotypes and their influence on the severity, prognosis, and lipid profile of preeclampsia. J Matern Neonatal Med. 2018;31(13):1681–8.

Johal T, Lees CC, Everett TR, Wilkinson IB. The nitric oxide pathway and possible therapeutic options in pre-eclampsia. Br J Clin Pharmacol. 2014;78(2):244–57.

Refbacks

  • There are currently no refbacks.